Medici Family Influence Various Measures of Centrality

By Marissa Stephens and Donna Choi

Matrix of Family Relationships

F_{1}	F 2	F 3	F_{4}	F_{5}	F6	F7	F8	F9*	F10	F11	F13	F14	F15	F16
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	1	0	1	0	0	0	0	0	0
0	0	0	0	2	1	0	0	2	0	1	0	0	0	0
0	0	0	0	0	0	2	1	0	0	2	0	0	1	0
0	0	1	0	0	0	0	1	0	0	2	0	0	1	0
0	0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	0	2	0	0	0	2	0	0	0	0	0	0	1
0	0	0	1	1	0	2	0	0	0	1	0	0	0	0
1	1	2	0	0	1	0	0	0	1	0	1	2	0	2
0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	1	2	2	0	0	1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	2	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	1	0	2	0	0	1	0	0	0

Family number 9 is the Medici Family

Map of Connections

Degree

- Degree of each family is a simple way of determining centrality
- To find the number of degree per node (or family), count how many relationships there are between that node and the other nodes.
- For Example, the Medici Family has a degree of 11
(The Medici Family is node number 9)

Degree of Each Family

=number of links per node

Power

- A slightly more complicated way of calculating centrality
- Takes into account people two relationships away
- (like a friend of a friend)
- Take the matrix M(people away a distance of 1) and add it to $\mathrm{M}^{*} \mathrm{M}$ (people away an exact distance of 2).
- Sum each row in the resulting matrix to obtain the power

Power of Each Family
 $=\mathrm{M}+\mathrm{M}^{\wedge} 2$

In this case, Family number 3 has the most power

Markov Chains

- Illustrates transition diagrams of probability
- Rows add up to 1
- To transform an adjacency matrix into a Markov chain, divide each element in a row by the row total
- This can be used to find the total fraction of influence of each family
- From now on, we will exclude family 12. It is isolated from all of the other families.

Matrix of Markov Chain of Family Relationships

Fraction of Influence per Family

Package Problem

Say one family wants to send a secret package to another family, but the first family can only send the package through people that family knows. If the package is randomly passed family to family, how long on average will it take the package to get to the desired family?

Approach: Use a Markov chain matrix to determine the average number of transfers from one family.

Average number of passes

F1	F_{2}	F3	F_{4}	F_{5}	F6	F7	F8	F9	F10	F11	F13	F14	F15	F16
0	25	13	22	19	25	19	24	1	41	19	25	27	25	17
77	0	13	18	18	19	13	20	8	48	17	28	34	24	20
78	27	0	18	11	24	17	20	9	49	12	28	36	21	22
84	29	15	0	13	32	10	12	15	55	8	29	42	16	23
83	30	10	14	0	30	15	15	14	54	8	29	40	17	24
76	18	9	20	17	0	17	22	7	47	17	28	33	24	20
82	25	15	10	15	30	0	12	13	54	12	29	40	21	20
84	29	14	10	11	31	9	0	15	55	9	30	42	19	23
69	24	12	21	18	24	18	23	0	40	18	24	26	24	16
71	26	14	23	20	26	20	25	2	0	19	26	14	26	18
84	30	12	11	9	31	14	14	15	55	0	29	41	16	24
77	28	14	18	17	29	17	21	8	48	15	0	34	17	14
71	26	13	22	20	26	20	24	2	28	19	26	0	26	18
83	30	14	12	11	31	15	17	14	54	9	23	40	0	22
75	26	14	18	18	28	14	21	6	47	17	20	33	22	0

Average distance FROM each family

distance

Average distance TO each family

\square Family ${ }_{1}$
Family 2

- Family 3

Family 4

- Family 5

Family 6
\square Family 7
Family 8
Family 9
Family 10
\square Family 11
Family 13
■ Family 14
Family 15
\square Family 16

Minimum Distance to Each Family

F1	F_{2}	F3	F_{4}	F5	F6	F_{7}	F8		F9	F10	F11	F13	F14	F15	F16
0	2	2	4	3	2	3		4	1	2	3	2	2	3	2
2	0	2	2	3	1	1		2	1	2	3	2	2	3	2
2	2	0	2	1	1	3		2	1	2	1	2	2	2	2
4	2	2	0	2	3	1		1	3	4	1	2	4	1	2
3	3	1	2	0	2	2		1	2	3	1	2	3	1	3
2	1	1	3	2	0	2		3	1	2	2	2	2	3	2
3	1	3	1	2	2	0		1	2	3	2	2	3	2	1
4	2	2	1	1	3	1		0	3	4	1	3	4	2	2
1	1	1	3	2	1	2		3	0	1	2	1	1	2	1
2	2	2	4	3	2	3		4	1	0	3	2	1	3	2
3	3	1	1	1	2	2		1	2	3	0	2	3	1	3
2	2	2	2	2	2	2		3	1	2	2	0	2	1	1
2	2	2	4	3	2	3		4	1	1	3	2	0	3	2
3	3	2	1	1	3	2		2	2	3	1	1	3	0	2
2	2	2	2	3	2	1		2	1	2	3	1	2	2	0

Family	Distance from F9	Family 9 would benefit most from forming	Family	Distance from F9
F1	1		F1	1
F2	1	connections with these	F2	1
F3		would minimize the	F3	1
F4	1	distance between the	F4	1
F_{5}	3 2	two families. If a	F_{5}	2
F6	1	made with family 4 or	F6	1
F_{7}	2	8, the shortest paths	F_{7}	2
F8	3	would be within a	F8	2
F9	0	The table on the right	F9	0
Fio		shows the minimum	Fio	1
F11	2	distance from family 9	Fi1	2
F13	1	family 4 was added.	F13	1
F14	1		F14	1
F_{15}	2	5	F15	2
F16			F16	1

Most Used Paths

- Big Question: What connections are used most frequently to obtain the shortest path?
- Approach: Using the shortest paths, count the number of times a connection ismade.

Path Usage for Shortest Path
 (from row to column)

F1	F2	F3	F4	F_{5}	F6	F_{7}	F8	F9	F10	F11	F13	F14	F15	F16
0	14	14	13	12	13	13	12	12	11	11	15	11	13	14
13	0	15	12	13	17	15	11	13	12	12	16	12	14	15
14	16	0	13	15	18	15	12	14	13	14	17	13	13	16
12	12	12	0	8	13	12	11	9	11	10	13	11	12	12
12	14	15	9	0	11	9	11	7	11	10	13	11	12	14
16	18	21	18	14	0	15	14	16	15	13	19	15	15	18
13	16	15	13	9	12	0	12	8	12	8	14	12	10	16
11	11	11	11	10	12	11	0	8	10	9	14	10	8	11
13	15	15	9	8	14	9	10	0	12	7	16	12	9	15
11	13	13	12	11	12	12	11	11	0	10	14	13	12	13
11	13	14	11	10	10	8	10	6	10	0	12	10	11	13
15	17	17	14	13	16	14	15	15	14	12	0	14	17	20
11	13	13	12	11	12	12	11	11	13	10	14	0	12	13
12	14	12	12	11	13	9	8	7	11	10	16	11	0	12
14	16	16	13	14	15	16	12	14	13	13	20	13	13	0

The most used path is from Family 6 to Family 3

DeGroot Model

- This demonstrates what percent of a decision will belong to each family.
- Uses Markov chains to determine how a consensus will be reached.
- Solve Π *T= П
- $\Pi=$ the static constant of the Markov chain

DeGroot percentage (own opinion excluded)

DeGroot Percentage

(considering own opinion as $1 / 2$ of influence)

Life without the Medici

- Deleting the Medici Family form the Markov Chain yields:

F_{1}	F_{2}	F3	F_{4}	F5	F6	F7	F8	F10	F11	F13	F14	F15	F16
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.5	0.5	0	0	0	0	0	0	0
0	0	0	0	0.5	0.25	0	0	0	0.25	0	0	0	0
0	0	0	0	0	0	0.333333	0.166667	0	0.333333	0	0	0.166667	0
0	0	0.333333	0	0	0	0	0.166667	0	0.333333	0	0	0.166667	0
0	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0
0	0.166667	0	0.333333	0	0	0	0.333333	0	0	0	0	0	0.166667
0	0	0	0.2	0.2	0	0.4	0	0	0.2	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0.142857	0.285714	0.285714	0	0	0.142857	0	0	0	0	0.142857	0
0	0	0	0	0	0	0	0	0	0	0	0	0.5	0.5
0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0.25	0.25	0	0	0	0	0.25	0.25	0	0	0
0	0	0	0	0	0	0.5	0	0	0	0.5	0	0	0

Graph of Relationships

Without the Medici

Distance FROM each family (no Medici)

average distance

Distance TO each family (no Medici)

Without the Medici

- Family 1 becomes completely disconnected
- The group is no longer connected
- Families 10 and 14 are isolated from the rest of the families
- Packages cannot be sent between certain families
- Eleven links are destroyed
- Therefore, the Medici family is a critical point in the Renaissance family social group.

...And this all came from a single 16X16 Matrix

F_{1}	F 2	F 3	F_{4}	F5	F6	F_{7}	F8	F9*	F10	F11	F13	F14	F15	F16
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	1	0	1	0	0	0	0	0	0
0	0	0	0	2	1	0	0	2	0	1	0	0	0	0
0	0	0	0	0	0	2	1	0	0	2	0	0	1	0
0	0	1	0	0	0	0	1	0	0	2	0	0	1	0
0	0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	0	2	0	0	0	2	0	0	0	0	0	0	1
0	0	0	1	1	0	2	0	0	0	1	0	0	0	0
1	1	2	0	0	1	0	0	0	1	0	1	2	0	2
0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	1	2	2	0	0	1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	2	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	1	0	2	0	0	1	0	0	0

